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Monte Carlo simulation of an antiferromagnetic Ising model at two competing temperatures

B. C. S. Grandi and W. Figueiredo*
Departamento de Fı´sica, Universidade Federal de Santa Catarina, 88040-900 Floriano´polis, SC, Brazil

~Received 10 November 1998!

We consider a two-dimensional antiferromagnet Ising system interacting with a heat bath at temperatureT.
The dynamics of the system is simulated by two competing stochastic processes: the two-spin-exchange
Kawasaki kinetics at temperatureT.0 and the one-spin-flip Glauber dynamics atTG→02, which mimics the
increase of the energy of the system. These two processes have probabilities 12p andp, respectively. Monte
Carlo simulations were employed to determine the phase diagram for the stationary states of the model and the
corresponding critical exponents. Contrary to the ferromagnetic case, the phase diagram obtained does not
exhibit the phenomenon of self-organization: for any nonzero value of the competing parameterp, and for any
value ofT, the only stationary phase which remains is the ferromagnetic one. At the phase transition between
the antiferromagnetic and paramagnetic phases, atp50, the values found for the critical exponents agree with
those of the corresponding equilibrium Ising model.@S1063-651X~99!07205-0#

PACS number~s!: 64.60.Ht
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When an Ising system is in contact with two heat baths
different temperatures@1,2#, it is possible to find it in non-
equilibrium steady states. The methods which were e
ployed to deal with this nonequilibrium problem were t
Monte Carlo simulations@1,3#, the dynamical pair approxi
mation@1,4# and the mean-field renormalization group@5#. In
all of these analyses, the stochastic single spin-flip Glau
process was used to drive the spin system towards its
equilibrium stationary states. In the work of Tome´ et al. @4#,
an interesting behavior was observed when the tempera
of one of the heat baths is allowed to become negative:
heat bath works like a source of energy to the spin syst
Although the exchange interaction between neighbor
spins is ferromagnetic, an antiferromagnetic state appear
high values of the flux of energy into the system. This ki
of self-organization phenomenon was also observed for
ferromagnetic Ising model when subject to two compet
Glauber and Kawasaki dynamic processes@6#.

In this work, we used Monte Carlo simulations and finit
size scaling relations@7,8# to determine the phase transitio
and the critical exponents of the antiferromagnetic tw
dimensional~2D! Ising model in contact with two heat bath
at distinct temperatures. The system evolves in time acc
ing to two independent competing stochastic processes
one-spin-flip Glauber dynamics@9#, with probability p, and
the two-spin-exchange Kawasaki dynamics@10#, with prob-
ability (12p). The role of these two dynamics concernin
the symmetries of the system is quite different: the Glau
kinetics always changes the order parameter, while the
wasaki one conserves the ferromagnetic order paramete
not the antiferromagnetic order parameter. We take for b
dynamic processes the transition probability rates given
the Metropolis prescription@11#. In order to simulate an in-
put of energy into the system, we choose the temperatur
one of the heat baths as beingTG→02. In this way, the
increase of energy of the system is due to the single spin
Glauber process. On the other hand, the spin-exchange
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wasaki kinetics accounts for the relaxation of the spin sys
towards its equilibrium states, at temperatureT established
by the other heat bath. That is, ifp50, the Kawasaki dy-
namics would drive the magnetic system to its equilibriu
state, with a constant value of the ferromagnetic order
rameter. On the other hand, the system goes to nonequ
rium stationary states when the Glauber process is pres
which occurs for any value ofp different from zero. Unlike
the work of Tome´ et al. @4#, where the self-organization phe
nomenon appeared for the ferromagnetic Ising model w
two competing Glauber processes, we do not observe
our simulations: for any value ofpÞ0 and for any value of
temperatureT the only stationary state is the ferromagne
one. Forp50, the system exhibits an order-disorder tran
tion between the antiferromagnetic and paramagnetic pha
The relaxation of the order parameter for the antiferrom
netic Ising model subject to the Kawasaki dynamics is
pected to be similar to that of the kinetic Ising ferromagne
model under Glauber dynamics, where the order paramet
not a conserved quantity@12#.

We consider an antiferromagnetic Ising model on a squ
lattice with N lattice sites. The energy of the system in t
states5(s1 ,s2 , . . . ,sN), where the spin variable assume
the valuess i561, is given by

E~s!5J(
~ i , j !

s is j . ~1!

In the summation, only spins that are nearest neighbors
considered andJ.0. Let P(s,t) be the probability of find-
ing the system in the states at time t. The evolution of
P(s,t) is given by the following master equation:

dP~s,t !

dt
5(

s8
@P~s8,t !W~s8,s!2P~s,t !W~s,s8!#,

~2!
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whereW(s8,s) gives the probability, per unit time, for th
transition from the states8 to states. We assume that the
two competing processes can be written as

W~s8,s!5pWG~s8,s!1~12p!WK~s8,s!. ~3!

In this equation,

WG~s8,s!5(
i 51

N

ds
18 ,s1

ds
28 ,s2

•••ds
i8 ,2s i

•••ds
N8 ,sN

wi~s!

~4!

is the single-spin-flip Glauber process, which simulates
input of energy into the system by the heat bath at temp
ture TG→02, and

WK~s8,s!5(
~ i , j !

ds
18 ,s1

ds
28 ,s2

•••ds
i8 ,s j

•••

3•••ds
j8 ,s i

•••ds
N8 ,sN

wi j ~s! ~5!

is the two-spin exchange Kawasaki process, which simul
the contact of the system with the heat bath at tempera
T.0. In the above summation, only pairs of neare
neighbor spins are considered.

In these equations,wi(s) is the transition probability of
flipping spin i, while wi j (s) is the transition probability of
exchanging two nearest-neighbor spinsi and j. We use the
following prescriptions forwi(s) andwi j (s):

wi~s!5H 0 for DEi<0,

1 for DEi.0,
~6!

because the temperatureTG→02, and

wi j ~s!5expS 2
DEi j

kBT D . ~7!

DEi is the change in energy after flipping spini andDEi j is
the change in energy after exchanging the nearest-neig
spinsi and j.

We have performed Monte Carlo simulations, with pe
odic boundary conditions, on a square lattice withL3L
5N sites, with values ofL ranging from L54 up to L
5128. We have started the simulations with different init
states to guarantee that the final stationary states we u
our calculations are the correct ones. For a given tempera
T and a selected value of the probabilityp, we choose at
random a spini, from a given initial configuration. Then, w
generate a random numberj1 between zero and unity. Ifj1
<p, we choose to perform the Glauber process: we de
mine the value ofDEi and the correspondingwi according to
the prescription of Eq.~6!. If j1.p, we go over the Ka-
wasaki process: we again generate another random nu
j2 in order to select one of the four nearest neighbors of
spin i, say j. Then we find the value ofDEi j and the corre-
spondingwi j ; after generating a random numberj3, we ex-
change the selected spins only ifj3<wi j . We have dis-
carded the first 104N Monte Carlo steps in order to achiev
the stationary regime, for all lattice sizes we consider. O
Monte Carlo step equalsN single-spin flips or exchange o
n
a-
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spin trials. To estimate the quantities of interest, we use
3104 Monte Carlo steps to calculate the averages for a
lattice size.

In order to find the transition point, we have plotted, f
each value ofp, the reduced fourth-order cumulant

UL512
^M4&

3^M2&2
~8!

as a function of temperatureT, for several values ofL. Once
this value is independent of lattice size at the critical te
peratureTc , the crossing point of these lines@8# gives Tc .
For any values ofTÞ0 andpÞ0, we found, for all values of
L, that the ferromagnetic order parameterMF is equal to 1,
and that the antiferromagnetic order parameterMAF is equal
to 0. Then, the cumulants never cross themselves. Tha
the Monte Carlo simulations showed that the only station
state of the system is the ferromagnetic one, except fop
50. In Fig. 1 we show the behavior of the ferromagnetic a
the antiferromagnetic order parameters as a function of
number of Monte Carlo steps. We chose the valuesL
5128, p50.5, andT52.0 to exhibit the time evolution of
the order parameters. We have also performed analytical
culations employing the dynamical pair approximation@13#:
we have also seen that the only stationary phase which
pears is the saturated ferromagnetic phase withMF51 for
any value ofpÞ0 and for all values ofT.

We also present the results we obtained for the partic
casep50, when the Ising system is only under the sp
exchange Kawasaki dynamics. In this case the antiferrom
netic order parameter relaxes towards its equilibrium va
like the nonconservative order parameter of the similar
netic ferromagnetic Ising model@12#. In this way the model
studied here exhibits an order-disorder transition.

We show in Fig. 2 a plot of the antiferromagnetic orde
parameterMAF as a function of 1/L for different values of
temperature. From this plot it is easy to see that the crit

FIG. 1. Ferromagnetic and antiferromagnetic order parame
as a function oft, measured in Monte Carlo steps~MCS!. We used
p50.5, T52.0, in units ofJ/kB , andL564.
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temperatureTc is between 2.20 and 2.30, in units ofJ/kB . In
order to find a more accurate value for the critical tempe
ture, we plot in Fig. 3 the corresponding reduced four
order cumulantsUL(T) as a function ofT for L ranging from
4 to 128. From the crossing of these curves, we estimate
critical temperature as beingTc5(2.2460.02), in units of
J/kB . This value is very close to the well known exact val
Tc52/ln(11A2). From the finite-size scaling relations@6#
obeyed byUL(T), we can compute the correlation leng

FIG. 2. Antiferromagnetic order parameterMAF as a function of
1/L for several values ofT andp50. From top to bottom the value
of T are 1.8, 1.9, 2.0, 2.1, 2.2, and 2.3. The transition appears in
range 2.2<T<2.3. T is in units ofJ/kB .

FIG. 3. Reduced fourth-order cumulantUL(T), for p50, as a
function of temperatureT for several values of the lattice sizeL.
Circles correspond toL54, up triangles toL58, down triangles to
L516, crosses toL532, plus signals toL564, and diamonds to
L5128. The broken lines serve as a guide to the eye. The cri
temperature isTc5(2.2460.02) in units ofJ/kB .
-
-

he

exponentn by taking the derivative ofUL(T) with respect
the temperature at the critical point. This derivativeUL8(Tc)
scales asL1/n. From the best fit of the log-log plot ofUL8(Tc)
versusL, which can be seen in Fig. 4, we found thatn
51.0060.03. In Fig. 5 we exhibit the log-log plot of the
antiferromagnetic order parameterMAF , at the critical tem-
peratureTc , versusL. As MAF(Tc) scales asL2b/n, the best
fit to the data points of this figure gives usb/n50.124
60.002. We show in Fig. 6 the log-log plot of the suscep
bility per spinxL(T) versusL, at Tc . This quantity scales as
Lg/n at the critical temperature, and from the best fit to t
data points we obtain the valueg/n51.7560.05. As to be
expected, this set of critical exponents agrees with the e

he

al

FIG. 4. Log-log plot ofUL8(Tc) versusL. The straight line is the
best fit to the data, which givesn51.0060.03.

FIG. 5. Log-log plot of the antiferromagnetic order parame
MAF(Tc) versusL. From the slope of the straight line, which is th
best fit to the data points, we findb/n50.12460.002.
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PRE 59 4995MONTE CARLO SIMULATION OF AN . . .
values of the two-dimensional Ising model, that is,n51, b
51/8, andg57/4.

Finally, we present our results concerning the dynam
critical exponentz of this model. Following Suzuki@14#, the
dynamic finite-size scaling theory asserts that the magne
tion of a system of linear sizeL, at its critical point, evolves
in time according to the following scaling relation:

MAF~ t,L !5L2b/n f ~L2zt !. ~9!

It is expected that the magnetization does not depend on
lattice size for very large lattices. Then it is easy to see t
@15# MAF(t,L) can be written as

MAF~ t,L !5At2b/nz, ~10!

whereA is a constant that does not depend onL. The last
equation is valid only for very large values ofL. Therefore,
taking into account the latter equation, we can evaluate
exponentz, after a log-log plot ofMAF(t,L) versust, for a
fixed value ofL, once we know the value of the ratiob/n.
After we prepared the system to be in its antiferromagn
ground state, we left it to evolve in time, measured in Mo
Carlo steps~MCS! per spin, and we recorded the magnetiz
tion at each 10 MCS. In Fig. 7 we show the log-log plot
MAF(t) versust, for L5160 andL5320, at the critical tem-
perature, which we have determined previously. We can
that the decay ofMAF(t) is almost independent ofL, which
allow us to use Eq.~10! to evaluate the dynamical critica
exponentz. We have considered the decay of the magnet
tion between 20 and 150 MCS. By fitting the data points t
straight line we obtainedz51.9860.02. We have discarde

FIG. 6. Log-log plot of the susceptibilityxAF(Tc) versusL. The
straight line is the best fit to the data points. From this slope we
g/n51.7560.05.
l
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the initial points of the simulation because we want to put
system into the second regime, where a power-law deca
the order parameter is expected@16#. The value we found for
z must be compared with the best estimates for this expon
obtained through intensive use of large scale simulations:
instance, Stauffer@17# foundz52.18 for a square lattice with
L5496 640 and Linkeet al. @18# foundz52.16 for a square
lattice with L5106. This result also confirms that the relax
ation of the antiferromagnetic order parameter for this sp
exchange Kawasaki process is rather similar to that of
kinetic Ising model under Glauber dynamics, where the f
romagnetic order parameter is not constant.

In conclusion, we have studied an antiferromagnetic Is
model subject to two competing dynamical processes
single-spin flip Glauber dynamics atTG→02, which simu-
lates the pumping of energy into the system, and the s
exchange Kawasaki process at finite temperature. We h
shown that this model does not exhibit the self-organizat
phenomenon for any value of the competition parametep
and for any value of temperature. The only stationary st
we found was the full saturated ferromagnetic state for
values ofpÞ0. At p50, when only the Kawasaki process
present, and the ferromagnetic order parameter is conse
we have found an order-disorder transition from the antif
romagnetic to the paramagnetic phase. By using Monte C
simulations and finite-size scaling relations in this case,
found the critical exponents of the model. The values
have determined for these exponents agree with those fo
for the corresponding two-dimensional ferromagnetic Is
model, for which the order parameter does not conserve

This work was partially supported by the Brazilian age
cies CNPq and FINEP.

d FIG. 7. Log-log plot of the antiferromagnetic order parame
versus time, measured in Monte Carlo steps~MCS!, at the deter-
mined critical temperatureTc52.24. Measurements were made e
ery 10 MCS, between 20 and 150 MCS. The lattice sizes
(1603160), triangles; and (3203320), squares. The value of th
dynamical critical exponent isz51.9860.02.
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